
 1

Dynamic Gate Product and Artifact Generation from
System Models

Maddalena Jackson, Christopher Delp, Duane Bindschadler, Marc Sarrel, Ryan Wollaeger, Doris Lam
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA, 91109

818-354-0319
mjackson@jpl.nasa.gov

Abstract—Model Based Systems Engineering (MBSE) is
gaining acceptance as way to formalize systems engineering
practice through the use of models. The traditional method
of producing and managing a plethora of disjointed
documents and presentations (“Power-Point Engineering”)
has proven both costly and limiting as a means to manage
the complex and sophisticated specifications of modern
space systems. We have developed a tool and method to
produce sophisticated artifacts as views and by-products of
integrated models, allowing us to minimize the practice of
“Power-Point Engineering” from model-based projects and
demonstrate the ability of MBSE to work within and
supersede traditional engineering practices.

This paper describes how we have created and successfully
used model-based document generation techniques to
extract paper artifacts from complex SysML and UML
models in support of successful project reviews. Use of
formal SysML and UML models for architecture and
system design enables production of review documents,
textual artifacts, and analyses that are consistent with one-
another and require virtually no labor-intensive maintenance
across small-scale design changes and multiple authors.
This effort thus enables approaches that focus more on
rigorous engineering work and less on "PowerPoint
engineering" and production of paper-based documents or
their "office-productivity" file equivalents.

TABLE OF CONTENTS

1. INTRODUCTION ...1	
2. CONCEPTUAL ARCHITECTURE ..2	
3. DOCUMENT PROFILE..3	
4. GENERATION SOFTWARE ...5	
5. VALIDATION SOFTWARE ..6	
6. TRANSFORMATION TOOLS ...6	
7. APPLICATIONS ..6	
8. CONCLUSIONS ..8	
REFERENCES ..8	
BIOGRAPHY ..9	

1. INTRODUCTION

The advent of standards like SysML, UML and OWL along
with rich modeling-tool support has facilitated MBSE
efforts to the point where they are starting to be utilized by
mainstream NASA flight projects and programs. As part of
an effort using MBSE approaches to re-architect a multi-

mission ground system [1][2], we have successfully used
this technique to support a pair of reviews of our MOS 2.0
development effort [2], and it is currently being used to
produce the Integrated Model Centric Engineering
Operations Concept report, the Advanced Multi-Mission
Operations System (AMMOS) As-is Architecture
Description, its own user-manual, and by various flight
projects to produce supporting documents.

The premise of model-based document generation is that a
review document or other paper artifact can be interpreted
as a view of the system or engineering model. The structure
of that view may be constructed external to the engineering
model, but with visibility into it, and may then be
transformed into an artifact that communicates effectively to
a human viewer, such as a PDF report, website, or
spreadsheet. We have developed a technique whereby the
structure of a target artifact (such as a document or website)
is modeled, in the same tool as the system model, using a
profile that extends UML to include elements of a document
(such as sections, paragraphs, and figures). This document
profile also includes a library of re-usable analysis and
query capabilities, which may be inserted into the document
model and executed on the system model as a whole or on
any subsystem or component. Artifacts are produced from
these document models by back-end scripts, which traverse
the document model and produce corresponding DocBook
XML [3], which may then be transformed by COTS
software into PDF, HTML or other formats. This technique
is important for a practical transition from a document-
based design paradigm to one of model-based systems
engineering, where projects wish to take advantage of the
benefits of MBSE while operating in the document-based
review framework.

The Document Generator arose as a practical solution to the
problems posed by adopting model-based engineering in a
document-based engineering paradigm. The current
standards for many areas of engineering center around
disparate collections of documents and other artifacts
tailored for specific users. From the perspective of adopting
MBSE, models must work themselves into the current set of
engineering products in a useful and productive way in
order to demonstrate the larger value of the work. Any
move to implement MBSE must consider the practical
challenge of the transition from document-centric to model-
centric communication of engineering results. Specifically,

 2

proponents of MBSE face concerns from other stakeholders
that standard system views, analyses, and review products
will suddenly become unavailable. And while some might
suggest that the review documents (often referred to as
"gate transition products" at JPL) and other artifacts
required by JPL, NASA, or other institutions will be
rendered obsolete by MBSE, the need to communicate
results in a logical order remains. Whether or not model-
based artifacts will replace laboriously crafted collections of
documents, there will always be a need for logical,
architected presentation of information. Models alone can
be overwhelming if they lack a charted course of navigation
through their contents; with the Document Generator, we
take advantage of the way in which the order and structure
of a document supports the communication of specific
points.

Beyond providing a human-friendly way to distribute and
ingest information, documents are currently used as
evidence in asserting that a model holding the current
design and architecture of a system may be “approved.”
Approval for models comes in the context of version
control, design reviews, and authorizations to
proceed. Typically, these documents take the form of filled-
in Word templates or Power Point packages full of system
diagrams and bullet points, which generally require
narration to comprehend. While MBSE modeling software
offers several ways to manage version control, at present,
existing software does not facilitate professional design
reviews, as simply opening a modeling tool and scrolling
around in various diagrams is not sufficient. In fact, it is
often confusing. It was this need to conduct a professional
model-based design review that sparked development of the
Document Generator.

The case that resulted in the Document Generator was one
where the project [1][2], had made the decision to capture
and design the architecture with SysML. The project had
also selected a modeling tool. A complex architectural
model was developed, and a major project review was
planned, and an Architecture Description Document was
required.

In this situation, the team faced one of the major challenges
in adopting MBSE on a wide scale: how to make a human-
readable document from the model?

Centralization and commonality of information are one
powerful advantage of MBSE. The option of writing the
document by hand (thus requiring engineers to spend their
time copying and pasting diagrams, tracking down and
synchronizing design changes rather than contributing to the
system design) was discarded due to inefficiency and as
being counter to the project’s model-based paradigm. We
needed the flexibility to agilely develop the architecture and
the ability to document it quickly. Essentially, we needed
the document to be a rapidly producible artifact that
changed with the system model. The tool selected by the

team includes features that allow users to create document
templates with references to model elements, run them
through a processing engine, and produce reports. We
decided to leverage this capability to create a scripted
template for the Architecture Description Document that
when processed by the tool, produced our ADD. After
wrestling with the challenges of hard-coding an ADD
template in the templating language, we decided to leverage
the power of SysML and UML to integrate generation of
artifacts directly into the model, and make it generic enough
that any modeler could create, edit, and produce document
artifacts without doing any coding or ever touching a word-
processing tool. With this capability, we make artifact
production a part of the system design, a view like any
other, and provide the foundation to make and re-use the
structure of any document, hook in standard analyses to be
conducted on the model, and provide the means for easily
extending their capabilities.

2. CONCEPTUAL ARCHITECTURE

The fundamental concept behind the Document Generator
(Docgen) is that any paper artifact is really a serialized
model that describes and narrates a set of views of the main
engineering model. The document model is dependent upon
the system model, parsing it to conduct analysis and extract
presentation material. A document is a logical, linearly
organized container for a collection of text descriptions,
images, and output from reasoning and analysis about the
engineering model. With Docgen, the description of a
document as a model is absolutely literal: the document
structure is completely designed and modeled in UML,
using a custom profile. To provide content, the profile
contains elements representing query and analysis functions
whose inputs are pointers to the main engineering model.
The current incarnation of the Document Generator allows
the content of a document to be organized according to
sequence and depth, such as you might find in a book,
technical report, or article.

Content may be structured sequentially and hierarchically: a
document is a collection of paragraphs, sections, and pieces
of analysis where the order and depth of the content is
important. Docgen operates within the modeling tool,
traversing a document "outline" and collecting content,
performing analysis, and writing the output to a file. The
extent of content collected and analysis performed is
determined by the modeler – Docgen includes only what is
made available by the document model. It can render any
subset of the diagrams in your model, and perform analysis
on each one – or it can produce no diagram images, and
analyze the model back-end instead. The Docgen software
produces a DocBook XML file, which may be fed into off-
the-shelf, open-standard transformation tools to produce the
final document in PDF, HTML, or other formats. All
diagrams are represented in vector format so no detail is lost
during rasterization.

 3

Docgen consists of a UML profile with elements for
creating a document framework; a set of scripts for
traversing document frameworks, conducting analysis, and
producing the output; and a set of tools to help users
validate the correctness and completeness of their
documents. Users will have to invest the time to create the
document framework; once this is done, the document can
be produced from a button click whenever the model data is
updated. The user never has to waste time numbering
sections or fighting with reluctant formatting, as this is all
performed automatically during the transformation from
DocBook to PDF, HTML, etc. Stylistic concerns such as
color, font, spacing, etc. may be customized during the
translation from DocBook XML to PDF or HTML, but that
information is not stored in the document model. Docgen
does allow the user to embed DocBook markup tags in the
text if they wish, for small-scale specification of lists,
quotes, tables, or other items; however, the DocBook
markup is style agnostic, meaning that that all a user can do
is specify the existence of a table and the content of the
cells. Time-consuming details such as column widths,
margins, etc. are part of the post-processing, and not
available to the user through Docgen. The intent in
supporting DocBook markup in the text is to ensure
backwards compatibility as engineers move towards the
model-based paradigm. Docgen encourages users to be
completely generic, to store all content in the model, and to
access it with queries – but allows users to achieve that
milestone comfortably.

Document models lend themselves well to reusability. An
empty template for a document (an Architecture Description
Document, for example) could be created, stored in a
repository, and then instantiated, customized, and filled out
by individual projects. The difficulty in altering an existing
document model scales with the complexity of manipulating
the modeling tool’s user interface; if drag-and-drop and
setting properties is straightforward in the modeling
software, altering the document model will be simple. An
institution could provide great value to projects by storing

and maintaining a library of document templates centrally
available to projects wishing to use them.

3. DOCUMENT PROFILE

The Document Profile is a customization of UML intended
specifically for constructing document frameworks and
queries. The profile content can be divided into structural
elements and queries. Each element is aware only of what
precedes and follows it. Structural elements are used to
create the "outline" of the document, and consist of
container elements (sections) and a document element. This
structure is filled by content, such as blocks of text, and
reusable functions termed queries, which are elements
which accept arguments, perform logic and analysis on
them, and return images or text to represent the results. All
elements have a few properties in common. These
properties are shown in Table 1.

Table 1: Common Properties of Document Elements

Propert
y

Description

Next Every element in the Document Profile is
aware of the element it follows and the element
it precedes. This property holds a pointer to the
next element in the chain.

First This boolean property indicates that an element
is the first in a sequence, at a given level. For
example, in a sequence of five subsections, the
"first" property of the first element would be
set to "true." Docgen’s validation software
ensures that there can be only one “first”
element per set of sections at a given level.

Unique
ID

Elements are assigned a unique identifier for
the purposes of cross-referencing. Docgen’s
validation software populates and maintains
these IDs. References may be made to any UID
from anywhere else in the document. The

Figure 1: Workflow and steps required to build a document model, translate it to DocBook XML, and transform it to a
human-friendly format. The workflow shows feedback if revisions must be made to the document.

 4

references are relative, so if the title of the
element is changed in the model, every cross-
reference in the text will be updated.

Ignore The "ignore" box, when checked, tells the
document generator to skip this element and
everything below it. For example, if you check
the box on one section in a sequence of
sections, just the "ignored" section will be
skipped, and any subsections will also be
ignored.

Structural Elements

The structural elements of the Document Profile are
<<Document>> and <<Section>>. With these two elements
and their special properties, we can create the structure and
a large part of the content of a document. The most
important aspects of the structural elements are sequence
and containment. Each section is aware only of what
precedes and follows it, and what elements it contains. For
example, a document is aware of its highest level sections.
Those sections are aware of which sections came before and
come after it, and what sub-content it contains. References
to following and preceding elements can done by setting the
properties by hand, or by drawing an order-enforcing
dependency between next and previous elements. This
makes it very easy to re-order sections. All structural
elements have some properties in common:

Table 2: Common Properties of Structural Elements

Property Description

Title The title of the section

Section
Contains

A section should have content of some
sort - text, tables, figures, output from
a model analysis. This property points
to elements that should be rendered
within a section.

Document: There will exist one document element per
document produced. The document is the highest-level
element in the tree, and is aware of just the sections below it
(via nesting). A document also contains a place to enter
author information, version numbers, and other common
metadata.

Section: The section is the main organizing element, being
aware of sequence and depth. The "level" of a section (i.e.,
if it is section 1.1 or 1.1.1) is not directly specified; it is
inferred by containment. For example, If a section owns
another section via the SysML use of "containment," the
owned section will be a subsection of the parent. Whether it
is a section 1.1.1 or 1.1.2 depends on its order in the linked
list of sections at that level. The actual section numbers are
not applied until the DocBook XML is transformed,
eliminating the time many authors spend wrestling with
formatting.

Figure 2: Example of a Section with Paragraphs. The section numbers are for convenience only. Numbering, cross-
reference IDs, and next/previous relations are maintained by Docgen’s validation suite and user-convenience software.

 5

Content Elements

Placing content in a document model is only a matter of
placing paragraph elements and query elements inside of
sections. The paragraph element is a container for blocks of
text, which may contain any DocBook XML markup, such
as index entries, cross references, lists, and any other tags
needed.

Queries give Docgen its power, as they are the elements
with the ability to reason about other parts of the model and
write the output to the document artifact. Queries provide
the basis for Docgen's extreme flexibility and extensibility.
A query may be created to be as generic or specific as the
user requires; and once it is added to the set of existing
queries, it is globally reusable. Because queries accept
pointers to the main engineering model, they are unaffected
by changes in the actual model content, and thus require
virtually no maintenance once the document model is
constructed. Queries exist at the same level as paragraphs,
providing most of the content of the document.

Queries may be used for functions as simple as printing
diagrams into a report, or as complex as analyzing a model
for correctness and completeness according to a set of
validation rules and inserting the results as a section in the
overall report. A query could even produce a host of
external dependent artifacts. For example, a query that
analyzes a spacecraft system model could perform a mass
roll-up and write the results to a spreadsheet, database, or
file, in addition to the current report. It could even feed the
values into an external mathematical solver, constraint
checker, or simulator.

The current version of the Document Generator has been
utilized mostly for data collection and reporting purposes,
and thus the most frequently used queries are simple. One
extremely common query is an Image Query, which simply
prints a target diagram into the report and assigns a title and
a caption. Another slightly more complicated query is one
that accepts collections of elements and filtering parameters
and produces bulleted lists of whatever kind of content is
desired that exists for those elements. Many queries produce
tables, where the columns might be properties of the system
like mass, stakeholders, concerns, allocations, comments,
etc.

One major advantage of creating a customized profile to
store document models over hand-coding report templates is
that profiles are transferable between modeling tools.
Assuming that modeling tools implement compatible XMI,
when a profile is exported from one tool, it may be ingested
by another modeling tool and used in that context. In reality,
the XMI is implemented differently by different tools;
however, tool-independent transformation standards such as
QVT [5] still allow for interchange by translating profiles
into tool-independent format, and then back into a
(different) tool-specific profile.

4. GENERATION SOFTWARE

The second piece of Docgen is the software that traverses
the document model, executes the queries, and prints the
output.

From a design standpoint, the language used is secondary to
the behavior the generation software must implement. The
software accepts a document element as input, and
recursively traverses the document model, inserting
appropriate DocBook XML markup into the output file,
rendering text, and executing queries. The behavior of the
code (not including the queries) can be visualized in Figure
3.

Figure 3: Behavior of Document Processing

The generation software starts with a <<Document>>
element. It looks for subsections, and processes the first
one. This triggers a recursive chain of processing, which is
described in Figure 4.

Docgen was developed for the tool MagicDraw UML, and
the document generation software is implemented in the
Velocity Templating Language (VTL) [4], an Apache
product that MagicDraw provides integrated with its
modeling tool which has access to MagicDraw’s entire Java
OpenAPI. MagicDraw’s OpenAPI is an interface by which
other software can communicate with, interrogate, and
modify UML/SysML model instances. MagicDraw provides
the capability to extend VTL by writing extension modules
in Java, and as such many querying functions are in fact in
Java, with VTL providing the template for individual query
output. VTL is very well suited to document generation; as
a templating language, it only processes its own directives,
allowing Docgen developers to write the XML structure
within the VTL code, which is then only rendered under the
appropriate conditions.

Extending the Docgen software is very straightforward;
each query is backed by a VTL or Java module which
resides in an SVN repository, which means that extending
Docgen is only a matter of creating a new stereotype in the
profile, and writing the code for its behavior and output.
Delivering the software is also simple, as code can be
shared through the SVN or packaged into builds for non-
developers.

 6

5. VALIDATION SOFTWARE

The third piece of Docgen consists of tooling to assist users
with model validation and simplified editing of the
document (not the system model). Abstractly, the tooling
checks and asserts several Docgen design constraints: that
every element is unique; that each element have no more
than one previous or next element; that each section
contains exactly one first element in a chain of sub-
elements; and that titles, captions, and other metadata exists
where appropriate. Other design constraints, such as a rule
that a section cannot follow an appendix, or that a paragraph
cannot contain a section, are enforced by the UML profiling
mechanism and the modeling tool’s implementation of the
semantics of a UML profile.

The behavior of these validation scripts is also generic –
each traverses the model as the generation scripts would,
and handles exceptions. For Docgen, validation scripts are
implemented in Jython (also included in MagicDraw with
access to its API). Jython is advantageous due to its ability
to leverage Python and Java libraries, and it may be rapidly
developed and tested because it doesn’t need to be
compiled, resulting in a lower barrier to training people to
use and extend Docgen. Jython was also preferred due to
team experience with Python, but other languages such as
Object Constraint Language (OCL) [6] could be leveraged
to provide some of the same benefit.

6. TRANSFORMATION TOOLS

DocBook XML is an OASIS standard [3] for storing
documents according to a content-based model, rather than
a visual or format-based model. DocBook abstracts
documents away from concerns of what a “chapter” looks
like, and instead defines it as a <section> element that exists

one level below a <book>. What elements like tables,
indexes, and headings should look like is entirely up to
whatever software transforms the document from DocBook
XML and into a print artifact. A default set of
transformation rules is provided with DocBook XML in the
form of XSLT style sheets; however, users have the ability
to customize these with their own stylistic preferences.

By creating documents in DocBook XML, Docgen
produces artifacts that are standard and may be transformed
into a number of different output formats. For example, the
same DocBook XML document may be transformed into
HTML, XHTML, PDF, ePUB and LaTeX, among others.

 7. APPLICATIONS

Docgen has been used at JPL by several projects to produce
artifacts from their models.

JPL Ops Revitalization

The Ops Revitalization Project [2] initiated and executed
the work to develop Docgen and has used it at every
incarnation. The project has now collaboratively produced
two Architectural Description Documents for major reviews
(both successful). The reviews were conducted by
navigating through a web-based version of the ADD (a PDF
version was also available); the only use of conventional
document-generating methods was to create a few
introductory PowerPoint slides. Conventional practice for
major reviews such as these is to cease design work
anywhere from a week to a month prior so that PowerPoint
slides can be generated, reviewed for consistency, and
various dry runs and rehearsals for talks conducted. Instead,
Ops Revitalization was able to focus more effort and
attention on the content of the engineering work. Even dry
runs and rehearsals were used to continue the engineering

Figure 4: Behavior of section code

 7

work, with comments made during those meetings being fed
back into the overall system model in near real time.

Preparation for reviews thus became smoothly integrated
into the overall development process for the Project, instead
of being an exercise in "PowerPoint engineering." We
estimate savings of ~10 work-weeks of effort by the ~5-6
person team during this time.

JPL Integrated Model-Centric Engineering

JPL’s Integrated Model-Centric Engineering initiative used
Docgen to collaboratively create and produce their Concept
of Operations. This product used DocGen mainly as a
means of demonstrating the productivity and value of
building a model based product. Since IMCE is advocating
MBSE, it is a powerful demonstrator to be producing their
products directly from their models.

JPL AMMOS Architecture Description Document

Docgen was also used to produce a Software Architectural
Description Document for AMMOS (the Advanced Multi-
Mission Operations System) [7]. The AMMOS system is a
set of multi-mission tools and services offered to projects by
the institution. AMMOS is organized into several
subsystems, such as Mission Planning and Sequencing and
Spacecraft Analysis. Modeling the software portions of the
AMMOS allows us to see the many interconnections and
interfaces both between and within these subsystems, which
has never been done before. Docgen allowed us to generate
a website which shows all this information with cross-
referenced links, which is immensely helpful to projects
trying to assemble a ground system using software
components from the AMMOS.

JPL Mars Science Laboratory (MSL)

Another project targeted for use of Docgen is the Mars
Science Laboratory Mission (MSL). MSL is currently

Figure 5: Document Profile

 8

modeling specific portions of its operations processes and
ground data system, with the similar benefit of collecting
various distributed pieces of information in one place and
the ability to reason and check for information consistency.
Using Docgen, MSL can generate the artifacts originally
used as input to the model, with the distinction that these
artifacts are synchronized and consistent.

JPL Docgen Documentation

The user manual for the product is self-producing. The
model used to test Docgen contains the model of the
Docgen user manual, and is available for JPL persons
interested in modeling. This allows colleagues to start with
a complete model, make changes, and see how it affects the
final document, and see examples of properly configured
model elements and queries.

8. CONCLUSIONS

Docgen provides a system for leveraging the power of
SysML and UML modeling and enabling teams to more
efficiently produce the document-based artifacts required by
the current engineering paradigm. Modeling documents
requires a one-time labor investment during which a team
constructs the structure of the document that the model will
produce. The resulting document model relies on references
to maintain its structure, so formerly labor-intensive
activities such as synchronizing design specifications with
documentation and updating the design is completely
automated. This advantage is further multiplied when the
same information needs to appear in more than one
document, or when documents must be maintained and
updated over time (e.g., between major design review, or
during mission operations). Teams may collaborate easily
on a document, as individual sections and text may be
locked and edited while the rest of the document remains
available to the rest of the team. Validation rules and tools
help users ensure the correctness and completeness of
document models, and the DocBook transformation tools
produce a highly styled document as a convenience rather
than a major obstacle to tackle. MBSE is a very powerful
engineering framework with many advantages; however, its
adoption will be difficult without means of adopting it
within the current document-based paradigm.
Demonstrating that MBSE is capable of producing all
artifacts necessary to meet requirements and gate reviews
allows practitioners and potential adopters to focus on
applying and utilizing its strengths.

9. FUTURE DIRECTIONS

Docgen is currently implemented such that it produces
artifacts from the modeling client tool. There is no reason it
must stop there – it is well suited to take advantage of web
services and provide other modes of interfacing with
UML/SysML models. The vision for Docgen 2.0 provides

much more automation of product production and caching
as well as direct web access to products. Automation and
web access centers mainly around the need for providing
access to products on a broader scale without having to run
the modeling client. As large teams pick up MBSE and
apply it to flight projects, they require access to both the
instantaneous state of the model-based designs as well
access to cached baselines of reports. This will keep
stakeholders up-to-date as well as amplify the benefit of
breaking away from the brittle concept of a paper or PDF
document and starts to provide access to the design in a data
driven way. Additionally, as models become more and more
interactively executable, tighter integration and more
sophisticated visual products will be needed to properly
depict the complexity of models. As models become
executable, Docgen will need to come up with new
strategies to probe and report execution steps as well as
provide more sophisticated visualization in the form of
plots, graphs and other depictions. In terms of the
supporting meta-modeling, the foundation is solid enough
to explore more sophisticated concepts like queries for more
slide oriented presentations and data exchange with stand
alone simulation tools as well as queries that do deeper and
deeper analysis of the model.

REFERENCES

[1] Bindschadler, D.L., Boyles, C.A., Carrion, C., and Delp,
C.L., MOS 2.0: The Next Generation in Mission
Operations Systems, SpaceOps 2010 Conference,
Huntsville, AL, Apr 25-30, 2010.

[2] Carrion, C., Delp, C.L., Illsley, J., and Liepack, O., Use of
Operational Scenarios in Architecting MOS 2.0,
SpaceOps 2010 Conference, Huntsville, AL, Apr 25-30,
2010

[3] DocBook: http://www.docbook.org/whatis

[4] Velocity Website: http://velocity.apache.org/

[5] OMG QVT: http://www.omg.org/spec/QVT/index.htm

[6] OMG OCL: http://www.omg.org/spec/OCL/2.0/

[7] AMMOS: http://ammos.jpl.nasa.gov

ACKNOWLEDGEMENTS

This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

 9

BIOGRAPHIES

Maddalena Jackson is a Software
Systems Engineer at the JPL since
January 2009. She is the main
architect and developer of the
Document Generator. She graduated
from Harvey Mudd College in
Claremont, CA in 2008 with a
Bachelor of Science in Engineering
(General). She has previously worked
in fields ranging from renewable
energy analysis to lizard ecology,

and completed an AAAS Mass Media Fellowship as a
science writer at the Sacramento Bee before starting at JPL.
At JPL, she is currently working as a Ground Data Systems
Engineer and an Integration, Test, and Deployment
engineer on the Juno mission, and is active in JPL’s
modeling community, currently chairing the JPL Modeling
Early Adopters grassroots group.

Christopher Delp is the Systems
Architect for Ops Revitalization
task in MGSS. He founded the
Modeling Early Adopters grass
roots MBE working group.
Previously he served as Flight
Software Test Engineer for MSL
and Software Test Engineer for the
Tracking, Telemetry, and
Command End-to-End Data
Services. He also leads the

INCOSE Space Systems Working Group's entry in the
Model Based Systems Engineering Grand Challenge.
Additionally, he has performed research on software
verification and tools for Service-Oriented Architecture in
support of the Deep-space Information Services
Architecture. Prior to coming to JPL, he worked as a
software engineer performing DO-178b Level FAA flight
qualified software development and testing on Joint
Tactical Radio System (JTRS) and the T-55 Full Authority
Digital Engine Controller (FADEC). Chris earned a Master
of Science in Systems Engineering from the University of
Arizona where he studied Model Based Systems
Engineering, Simulation and Software Engineering.

Duane Bindschadler is the Asst.
Program Manager for Operations in
Multimission Ground Systems and
Services (MGSS) at JPL. He has

previously led Ground System development efforts for the
Space Interferometry Mission, and led Flight Operations
and Science operations during Galileo's extended tour of
the Jovian System. Before coming to JPL, he held research
and adjunct faculty positions in Earth and Space Sciences
at UCLA. Dr. Bindschadler has a Ph.D and M.Sc. in
Geology from Brown University and a B.S. in Physics from
Washington University, St. Louis.

Marc Sarrel currently works on the
Operations Revitalization task in MGSS,
the Multimission Ground Systems and
Services Program Office. He has worked
on various JPL flight project over the past
twenty years, including Mars Observer,
Magellan, Cassini and the Spitzer Space
Telescope. He has worked in the areas of
software development, Ground Data

Systems and Mission Operations Systems, including as the
Mission Operations Systems Engineer for Spitzer. Marc
has worked on a number of Model Based Systems
Engineering tasks, in addition to Operations Revitalization,
including on the Ares I project and the Constellation
Program Software and Avionics Office. He has also
participated in the INCOSE Model-Based Systems
Engineering grand challenge on the team from the Space
Systems Working Group, where he also serves as
communications coordinator. Marc has a B.S. in Computer
Science from Washington University in St. Louis, and an
M.S. in Computer and Information Science from The Ohio

State University.

Ryan Wollaeger is a research
assistant in the Nuclear Engineering
and Engineering Physics graduate
program at the University of
Wisconsin, Madison. He spent the
summer of 2010 supporting the
AMMOS Ops Revitalization DocGen
effort under the supervision of
Christopher Delp and Maddalena

Jackson.

Doris Lam is a
Software Systems
Engineer and part
of the Ground

Software
Architecture and
System Engineering
Group at Jet

Propulsion
Laboratory since August 2008. She got her B.S. in
Computer Science from UCLA before joining JPL. She has
previously worked in the POQ Information Systems
department at Amgen, and as a research scholar at UCLA’s

 10

Center for Embedded Networked Sensing, where she
participated in the development of a software system for
capturing, analyzing, and displaying location (GPS)
information from cell phones. She is active in the modeling
community at JPL and is currently applying a model based
approach to capture and analyze MSL operation processes.

 11

